Zur Massenspektrometrie von Gallensäurederivaten

Von

H. Egger*

Aus dem Organisch-Chemischen Institut der Universität Wien Mit 4 Abbildungen

(Eingegangen am 17. Februar 1968)

Die MS von Gallensäurederivaten lassen eine Anzahl von Regelmäßigkeiten erkennen, welche die Methode für die Konstitutionsermittlung in dieser Substanzgruppe recht wertvoll machen. Diagnostisch brauchbare Peaks entstehen hauptsächlich durch Abspaltung der Seitenkette bzw. der Seitenkette samt dem Ring D (letzteres unter H-Wanderung); diese Fragmentierungen werden von einer stufenweisen Eliminierung der funktionellen Gruppen begleitet. Es werden die jeweils bevorzugten Abbauwege an Beispielen diskutiert. Die Art, Zahl und Position der Sauerstoffunktionen kann häufig aus dem MS allein ermittelt, oder auf wenige Möglichkeiten eingeschränkt werden. Die MSvon 20 Gallensäurederivaten werden angegeben.

Mass spectra of bile acids follow a number of fragmentation rules, which make the method very useful for structure elucidation in this group. Diagnostically significant peaks mainly arise from the loss of the side chain, respectively of the side chain together with ring D (the latter with hydrogen transfer). These fragmentations are followed by successive eliminations of the functional groups. The conditions favouring a certain pathway are discussed. The type, number, and position of the oxygen functions may frequently be ascertained from the mass spectrum or may be reduced to a few possibilities. The mass spectra of 20 derivatives of bile acids are presented.

Im Verlaufe von Untersuchungen an "Pseudo-dehydrocholsäure", die als Bis-steroid charakterisiert werden konnte¹, wurden die Massenspektren (MS) einer Anzahl von Gallensäurederivaten zu Vergleichs-

^{*} Herrn Prof. Dr. L. Schmid in Verehrung zum 70. Geburtstag gewidmet.

¹ H. Egger, A. Nikijorov, F. Wessely und H. Nesvadba, Mh. Chem., im Druck.

zwecken studiert. Im folgenden soll dargelegt werden, daß die Zusammenhänge zwischen Konstitution und MS auch in dieser Verbindungsreihe wertvolle Aufschlüsse aus minimalen Probenmengen liefern.

Die Pionierarbeiten auf diesem Gebiet leisteten, wie auch sonst auf dem Gebiet der MS von Lipoiden, die Arbeitsgruppen von Ryhage und $Stenhagen^{2,3}$. Wegen der Unzulänglichkeit der damaligen Probeneinführsysteme mußten allerdings durchwegs an Carboxyl- und Hydroxylgruppen veresterte Derivate verwendet werden, und die hohen Einlaßtemperaturen (meist 250°) führten, neben gelegentlichen groben thermischen Zersetzungen, durch die starke zusätzliche thermische Anregung bei isomeren Verbindungen zu nivellierenden Effekten⁴. In jüngster Zeit konnten *Eneroth* und Mitarbeiter mit Hilfe der Direktkopplung Gaschromatograph—Massenspektrometer durch Verwendung von Trimethylsilyl- und Trifluoracetylderivaten komplizierte Gemische von Gallensäuren in biologischem Material erfolgreich analysieren⁵, ⁶. An der Konstitutionsaufklärung des Gallenalkohols Ranol aus Froschgalle hatte die MS wesentlichen Anteil⁷.

Mit den nunmehr verfügbaren Einlaßsystemen gelingt es, auch von freien Gallensäuren ebenso wie von Derivaten mit mehreren Hydroxylgruppen und sogar von einzelnen (dimeren) Derivaten der "Pseudodehydrocholsäure"¹ meist MS ohne ernstliche Zersetzung zu erhalten. Dies fördert die Heranziehung zur raschen Untersuchung von Reaktionsprodukten (nötigenfalls in Kombination mit der Dünnschichtchromatographie) ungemein, zumal häufig eine Isolierung nicht nötig ist. Manchmal liefert die langsame Verdampfung in der Ionenquelle aus Intensitätsverschiebungen zusätzliche Anhaltspunkte über Gemische⁸.

In allen von uns untersuchten Verbindungen war das Molekülion einwandfrei erkennbar. Die Acetate neigen allerdings in der Regel stärker zur Eliminierung von Essigsäure als die entsprechenden freien Hydroxylverbindungen zur Abspaltung von Wasser. Zur Entscheidung darüber, ob eine Spitze tatsächlich das Molekülion eines Gallensäurederivates repräsentiert, scheint daher die Acetylierung von OH-hältigen Verbindungen nicht besonders geeignet.

In diesem Zusammenhang sei erwähnt, daß der als Schutzgruppe bei Steroiden häufig verwendete "Cathylrest" ($-OCOOC_2H_5$)⁹ sich massenspektrometrisch ziemlich analog dem Acetylrest verhält: Es erfolgt bei 3-Cathyl-5 β -cholansäurederivaten Eliminierung von 90 Masseneinheiten

⁶ P. Eneroth, B. Gordon und J. Sjövall, J. Lipid Res. 7, 524 (1966).

⁷ A. D. Cross, Biochem. J. 90, 314 (1964).

⁹ L. F. Fieser und M. Fieser, Steroide, Weinheim 1961, S. 209.

² R. Ryhage und E. Stenhagen, J. Lipid Res. 1, 361 (1960).

³ S. Bergström, R. Ryhage und E. Stenhagen, Svensk Kem. Tidskr. 73, 566 (1961).

⁴ M. Spiteller-Friedmann und G. Spiteller, Chem. Ber. 100, 79 (1967).

⁵ P. Eneroth, B. Gordon, R. Ryhage und J. Sjövall, J. Lipid Res. 7, 511 (1966).

⁸ G. Spiteller, Massenspektrometrische Strukturanalyse org. Verb., Weinheim 1966, S. 30.

(ME), also (zumindest formal) von C₂H₅OH + CO₂. Diesen Übergängen entsprechende metastabile Peaks sind nachweisbar. Zusätzliche Fragmentierungen an der Carbäthoxygruppe treten nicht mit merklicher Intensität auf. Dieses Verhalten ist etwas überrasc hend, da andere Kohlensäureester, deren MS bereits ziemlich eingehend untersucht wurden¹⁰, völlig anders fragmentieren. Als charakteristisches Beispiel ist in Abb. 1 das MS von 3α -Cathyl-cholsäuremethylester dargestellt.

Die MS praktisch aller untersuchter Gallensäurederivate weisen den gleichen Habitus auf: In einem größeren Massenbereich unterhalb des Molekülions findet man die relativ wenigen Peaks, die — von einem detaillierten Fragmentierungsmechanismus zunächst abgesehen — leicht mit dem allgemeinen Abbauschema korreliert werden können und daher von potentiellem diagnostischen Wert sind. Die untere Grenze dieses Massenbereiches ist hier durch das Skelett der Ringe A, B und C gegeben. Ein Abbau vom Ring A aus, z. B. als Retro-*Diels—Alder*-Reaktion¹¹, spielt demgegenüber eine geringere Rolle. Die tiefergreifenden, zu kleineren Bruchstücken führenden Reaktionen (Massenbereich unter etwa 200 ME) liefern nur in einzelnen Fällen aus den vielen mit vergleichbarer Häufigkeit gebildeten Fragmenten klar herausragende Schlüsselbruchstücke.

Zunächst zu den Zusammenhängen mit der Art und Zahl der funktionellen Gruppen, wobei es sich ja praktisch nur um Sauerstoffunktionen

Monatshefte für Chemie, Bd. 99/3

¹⁰ H. Budzikiewicz, C. Djerassi und D. H. Williams, Mass Spectrometry of Org. Compounds, San Francisco 1967, S. 484.

¹¹ H. Budzikiewicz, J. I. Brauman und C. Djerassi, Tetrahedron [London] 21, 1855 (1965).

handelt: Die Carboxylgruppe der freien Gallensäuren macht sich in ihren MS nicht direkt bemerkbar, sie läßt sich (ohne Zuhilfenahme anderer Daten) nur indirekt aus der Massendifferenz bei bereits geklärtem Steroidskelett erschließen. Die Methyl- bzw. Äthylester hingegen sind häufig durch die Peaks $M - \text{OCH}_3$ (31 ME) bzw. $M - \text{OC}_2\text{H}_5$ (45 ME) und $M - \text{CH}_2\text{COOCH}_3$ (73 ME) charakterisiert. Beim Vergleich einiger freier Säuren mit ihren Estern fanden sich z. T. beachtliche Differenzen in der relativen Intensität einander entsprechender Bruchstücke; im übrigen machen sich aber Verschiedenheiten in der Seitenkette nur durch Verschiebungen der Peaks im oberen Massenbereich bemerkbar.

Die wichtigsten Hinweise auf die Zahl und Art der O-Funktionen am Steroidskelett der Gallensäurederivate lassen sich aus den Massenzahlen und Intensitäten zweier Peakgruppen entnehmen. Die eine entspricht dem Verlust der Seitenkette ohne Nettoübertragung von H-Atomen, begleitet von mehrfachen Eliminierungen von OH-Gruppen als H₂O (bzw. —OCOCH₃-Gruppen als Essigsäure); dabei laufen anscheinend beide Möglichkeiten — zuerst Abspaltung der Seitenkette, darnach von H₂O bzw. die umgekehrte Reihenfolge — nebeneinander ab, wie aus den zugehörigen metastabilen Peaks hervorgeht¹². Dies sei als "Spaltung I" bezeichnet. Die zweite Peakgruppe stammt von einer Abspaltung des Ringes D samt der Seitenkette unter Wanderung eines Wasserstoffatomes zum Steroidrumpf ("Spaltung II")¹³, Auch hier finden sich zusätzlich analoge Abspaltungen von Substituenten aus den Ringen A, B und C wie bei Spaltung I.

Die relative Bedeutung dieser beiden Fragmentierungswege ist bei verschiedenen Verbindungen sehr unterschiedlich. Spaltung II dominiert bei allen untersuchten Verbindungen mit einer 12-Ketogruppe (Verbindungen 6, 7, 15, 16, 17, 19, 20). Dagegen ist Abbauweg II bei allen anderen bedeutungslos, stattdessen tritt Spaltung I in den Vordergrund; nur beim 3,7-Diketo-12-acetoxy-cholansäuremethylester (18) fand sich II neben Spaltung I. Es ist klar, daß die Massendifferenz zum Molgewichtspeak, die bei gewöhnlichen Gallensäuremethylestern bei Fragmentie-

¹² P. D. G. Dean und R. T. Aplin, Steroids 8, 565 (1966).

¹³ C. Djerassi und L. Tökés, J. Amer. Chem. Soc. 8, 8536 (1966).

rung I 115 ME, bei II 155 ME beträgt, bei seltenen Gallensäurederivaten mit veränderter Seitenkette (z. B. Koprostangerüst¹²) auch darauf Schlüsse zuläßt.

Peaks der bei Steroiden ubiquitären Spaltung I sind immer nachweisbar, wenn auch neben II manchmal nur mit geringer Intensität. Ihr diagnostischer Wert besteht in der Möglichkeit eines Rückschlusses auf die Zahl der Sauerstoffunktionen im Steroidgerüst aus der Massenzahl.

Als (hypothetische) Basis dafür dient die Masse der unsubstituierten Ringe A, B, C, D: 259. Dieser Peak tritt jedoch wegen des völlig andersartigen Fragmentierungsverhaltens der Cholansäure in ihrem MS nicht auf. Eine Verschiebung um 14 ME auf 273 bzw. 28 ME auf 287 ist also z. B. bei Mono- bzw. Diketo-cholansäurederivaten zu erwarten. Verschiebungen unter den Wert 259 kommen durch Eliminierung von H₂O, CH₃COOH o. ä. aus dem Skelett zustande, wodurch, allerdings wahrscheinlich meist nur formal, die Massenzahlen der entsprechenden Fragmente mit einer oder mehreren Doppelbindungen aufscheinen (z. B. 253 aus $259 - 3 \times 2$ bei Cholsäure). Diese Zusammenhänge ergeben sich meist aus den zusätzlich vorhandenen Peaks der Zwischenstufen der Eliminierungen recht klar. Völlig analoge Verschiebungen lassen sich bei den Peakgruppen von Spaltung II feststellen.

Während die Zahl der Acetoxygruppen praktisch immer aus der Zahl der aufeinanderfolgenden Abspaltungen von 60 ME folgt — vorausgesetzt, daß der bei Acetaten mitunter sehr kleine Molgewichtspeak gesichert ist —, ist der analoge Schluß bei Hydroxysteroiden häufig irreführend. Insofern kann manchmal die zusätzliche Untersuchung des vollacetylierten Derivates nützlich sein. Es ist schon länger bekannt, daß auch Ketosteroide in recht unterschiedlichem Ausmaß H₂O eliminieren

Verb.	M	$M-n imes ext{H}_2 ext{O}$ (AcOH)	andere Fragmente: A
1	376	358	343 (358—CH ₃)
	(36)	(100)	(13)
2	392	374, 356	341 (356-CH ₃)
	(19)	(45) (100)	(28)
3	406	388, 370	357 (388-OCH ₃)
	(5)	(29) (40)	(10)
			$(355 (370 - CH_3))$ (7)
4	392	374, 356	359 (374-CH ₃)
	(7)	(100) (65)	(15)
			(16)
z	108	900 97A	272 (288 CH-)
5	400 (9)	(100) (81)	(21)
	(*)	() ()	355 (370-CH ₃)
			(18)
			315 $(374 - CH_2COOCH_3)$ (9)
8	416	398	371 $(M - OC_2H_5)$
	(74)	(42)	(28)
			$\begin{array}{c} 329 & (M - CH_2 COOC_2 H_5) \\ (13) \end{array}$
9	422	404, 386, 368	$371 (386 - CH_3)$
	(1)	(8) (100) (34)	(14) 355 (386 $-$ OCH ₃)
			(3) 353 (368-CH ₃)
			(10)
11	506	446, 428 $(446 - H_2O)$	355 $(386 - OCH_3)$
	(<1)	$\begin{array}{c} (6) \ (100) \\ 286 \ 269 \ (296 \ H_{-}O) \end{array}$	(10) 252 (269 CHz)
		(11) (43) $(389 - 1120)$	(6)
12	434	416, 398, 380	353 (398 – OC ₂ H ₅)
	(9)	(14) (8) (5)	(5) 347 $(M - CH_2COOC_2H_2)$
			$(8) \qquad (12 - CH_2 COOC_2 H_5)$
			$329'(347 - H_2O)$
			(5)

Tab. 1. Massenspektren von

Spaltung I	Spaltung II	andere Fragmente: B
257 (358-SK) (9)		304 , 248, 230 (248-H ₂ O), 215 (7) (19) (19) (52)
273 $(374-SK)$ (7) 255 $(273-H_2O)$ (17)	_	302, 264, 246 (264 $-$ H ₂ O), 228 (246 $-$ H ₂ O) (7) (19) (17) (28) 213 (228 $-$ CH ₃), 201 (21) (9)
273 (388—SK) (100) 255 (79)		173, 154 (13) (31)
$\begin{array}{c} 273 & (388-SK) \\ (7) \\ 255 \\ (15) \end{array}$	~	264, 246, 231, 228, 213 (231 – H ₂ O) (5) (24) (27) (20) (37)
273 (29) 255 (96)	-	246, 231, 228, 213 (26) (34) (18) (41)
287 $(M-SK)$ (24) 269 (287-H ₂ O) (19)	247 (<i>M</i> -SK-D) (100)	-
289 (404-SK) (4) 271, 253 (74) (97)	_	314, 226 (8) (27)
313 (428-SK) (44) 253 (313-AcOH) (62)	_	357, 261 (8) (14)
$\begin{array}{ccc} 287 & (416-SK) \\ (37) \\ 269, & 251 \\ (100) & (18) \end{array}$	-	_

Gallensäurederivaten

Tabelle 1. (Fortsetzung)

Verb.	M	$M\!-\!n imes { m H}_2{ m O}$ (AcOH)	andere Fragmente: A
13	462 (14)	444, 426, 402 (44) (54) (10) 384 (402 $-$ H ₂ O) (25) 366 (384 $-$ H ₂ O) (24)	371 (402-OCH ₃) (22)
14	492 (16)	474, 456, 402 $(M-90)$ (23) (16) (35) 384 (402 $-H_2O$) (44) 366 (384 $-H_2O$) (23)	419 $(M - CH_2COOCH_3)$ (5) 371 $(402 - OCH_3)$ (12)
15	504 (53)	486, 444 (<i>M</i> -AcOH) (3) (100) 384 (24)	473 (<i>M</i> -OCH ₃) (8)
16	460 (100)	442, 400 $(M - AcOH$ (78) (16) 382 (400 - H ₂ O) (28)	429 $(M - \text{OCH}_3)$ (17) 387 $(M - \text{CH}_2\text{COOCH}_3)$ (15)
17	490 (56)	472, 400 $(M-90)$ (52) (68) 382 (400 $-H_2O$) (58)	459 $(M - \text{OCH}_3)$ (8) 417 $(M - \text{CH}_2\text{COOCH}_3)$ (10) 369 $(400 - \text{OCH}_3)$ (15)
18	460 (67)	442, 400 $(M-AcOH)$ (4) (100) 382 (400-H ₂ O) (9)	429 (<i>M</i> -OCH ₃) (11)
19	402 (19)	384, 366 (61) (8)	367, 343 (<i>M</i> -CH ₂ COOH) (7) (9)

Spalte A: Fragmente, die ohne Bruch des Steroidskeletts gebildet werden. Spalte B: Weitergehende andere Fragmentierungen.

Spaltung I	Spaltung II	andere Fragmente: B
$\begin{array}{rr} 329 \ (444-SK), \ 311 \\ (100) & (35) \\ 269 \ (329-AcOH) \\ (76) \\ 251 \ (269-H_2O) \\ (61) \end{array}$	_	289 (25)
$\begin{array}{l} 359 \ (474-SK) \\ (44) \\ 341 \ (359-H_2O) \\ (13) \\ 287 \ (M-90-SK), 269 \\ (10) \\ 251 \ (269-H_2O) \\ (51) \end{array}$		329, 311, 229 (17) (15) (14)
329 (444 $-SK$) (4) 311, 269 (M -2 $AcOH$ - SK) (14) (15) 251 (269 $-H_2O$) (16)	349 $(M-SK-D)$ (6) 289 $(M-AcOH-SK-D)$ (14) 229 $(M-2AcOH-SK-D)$ (81)	243, 154 (19) (71)
$\begin{array}{ccc} 345 & (M-SK), 327 \\ (9) & (24) \\ 285 & (345-AcOH), 267 \\ (27) & (17) \end{array}$	$\begin{array}{ll} 305 & (M-SK-D), \\ (50) \\ 245 & (305-AcOH), 227 & (245-H_2O) \\ (78) & (12) \end{array}$	
285 (400 $-SK$) (36) 267 (285 $-H_2O$) (28)	335 (M - SK - D) (24) 245 (M - 90 - SK - D) (100)	327 (417-90), 258 (23) (24)
$\begin{array}{cccc} 345 & (M-SK), \ 327 \\ (13) & (8) \\ 285 & (M-AcOH-SK), \ 267 \\ (10) & (33) \end{array}$	305 $(M - SK - D)$ (23) 245 $(M - AcOH - SK - D)$ (48)	275, 259, 243, 154, 121 (18) (18) (26) (75) (61)
301 (M-SK) (23) 283 (384-SK) (18)	261 $(M - SK - D)$ (100)	287, 274 (21) (16)

H. 3/1968] Zur Massenspektrometrie von Gallensäurederivaten

1171

SK = Seitenkette, D = Ring D. Die Zahlen bedeuten m/e-Werte; in Klammern ist jeweils darunter die rel. Intensität in % angegeben. Verb. 6, 7, 10 und 20 siehe Abb. 1-4.

können¹³. Unter den in Gallensäuren gefundenen C=O-Positionen scheint vor allem die 7-Ketogruppe dazu prädestiniert (vgl. die Intensitäten der entsprechenden Peaks in der Tab. 1). Wenn etwa, wie im MS des Dehydrocholsäureesters (20, Abb. 2), der starken M—18-Spitze keine H₂O-

Abb. 3 und 4. MS von 6 und 7

Eliminierung bei Spaltung I oder II entspricht, liegt die Annahme nahe, daß es sich um eine durch eine C=0-Gruppe ausgelöste H₂O-Eliminierung handelt. Eine 12- und vor allem eine 3-Ketogruppe zeigen eine solche H₂O-Abspaltung viel schwächer.

So lassen sich etwa die MS von 3,12- und 7,12-Diketocholansäure leicht durch die wesentlich höhere M—18-Spitze bei der 7,12-Diketocholansäure unterscheiden, obwohl im übrigen nur wenig charakteristische Unterschiede auftreten. Das MS der 3,7-Diketocholansäure¹² ist erwartungsgemäß von den beiden erstgenannten völlig verschieden, da hier Fragmentierung I statt II eintritt (keine 12-Ketogruppe!). Die zu erwartende hohe M - 18-Spitze ist auch hier vorhanden.

Auf eine ähnliche Reihenfolge der H₂O-Eliminierung schließen auch Dean und Aplin¹² bei Hydroxy-gallensäuren: Da Retro-Diels—Alder-Spaltung im Ring A (Abspaltung von 54 ME = Butadien) erst nach Eliminierung der letzten OH-Gruppe von 3-Hydroxy-gallensäuren eintritt, scheint diese am schwierigsten zu eliminieren.

- 1 3a-Hydroxy-5β-cholansäure (Lithocholsäure)
- 2 3a,7a-Dihydroxy-cholansäure* (Chenodesoxycholsäure)
- 3 3a,12a-Dihydroxy-cholansäuremethylester (Desoxycholsäuremethylester)
- 4 3α,6α-Dihydroxy-cholansäure (Hyodesoxycholsäure)
- 5 3a,6a-Dihydroxy-cholansäuremethylester
- 6 3,12-Diketocholansäure
- 7 7,12-Diketocholansäure
- 8 7,12-Diketocholansäureäthylester
- 9 $3\alpha,7\alpha,12\alpha$ -Trihydroxy-cholansäuremethylester (Cholsäuremethylester)
- 10 3α -Cathyl-cholsäuremethylester
- 11 3,7-Diacetyl-cholsäuremethylester
- 12 3a,12a-Dihydroxy-7-ketocholansäureäthylester
- 13 3a-Acetoxy-7-keto-12a-hydroxy-cholansäuremethylester
- 14 3α -Äthoxycarbonyloxy-7-keto- 12α -hydroxy-cholansäuremethylester
- 15 3a,7a-Diacetoxy-12-ketocholansäuremethylester
- 16 3α-Acetoxy-7,12-diketocholansäuremethylester
- 17 3α-Äthoxycarbonyloxy-7,12-diketocholansäuremethylester
- 18 3,7-Diketo-12α-acetoxy-cholansäuremethylester
- 19 3,7,12-Triketocholansäure (Dehydrocholsäure)
- 20 3,7,12-Triketocholansäuremethylester.

Weitergehende Aussagen über die Positionen der funktionellen Gruppen in Gallensäurederivaten sind ohne Zuhilfenahme von Vergleichsspektren authentischer Verbindungen aus dem MS allein nur in Sonderfällen möglich. Ebenso sind Unterscheidungen von Epimeren, wenn überhaupt, nur durch sorgfältigen quantitativen Vergleich der MSder in Frage kommenden Verbindungen möglich. Kürzlich zeigte Kallner¹⁴, daß sich die MS von Allo-cholansäurederivaten (5 α -H) von denen entsprechender Cholansäuren (5 β -H) geringfügig, jedoch signifikant unterscheiden. Die Massenspektrometrie ist also auch hier meist auf die Er-

^{*} Alle weiteren genannten Verbindungen sind 5 β -Cholansäurederivate.

¹⁴ A. Kallner, Chem. Acta Scand. 21, 322 (1967).

1174 H. Egger: Zur Massenspektrometrie von Gallensäurederivaten

gänzung durch andere geeignete Methoden (z. B. ORD oder NMR) angewiesen, liefert aber ihrerseits grundlegende Aussagen, die auf anderem Wege nur schwierig zu gewinnen sind.

Alle MS wurden mit einem Massenspektrometer CH 4 der Atlas-Werke, Bremen (Vakuumschleuse, TO-4-Ionenquelle), bei einer Elektronenenergie von 70 eV aufgenommen. Für die Messung einiger MS bin ich Herrn Dr. G. Schaden, Max-Planck-Institut für Kohlenforschung, Abteilung Strahlenchemie, Mülheim/Ruhr, zu Dank verpflichtet. Für die Überlassung von Substanzproben der Gallensäurederivate sei Herrn Dr. H. Nesvadba, Forschungslaboratorium der Fa. Sanabo, Wien, auch an dieser Stelle herzlich gedankt.